skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nuruzzaman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. This work translated the preceding metal-catalyzed tryptophan modification method into a metal-free process, enabling efficient labeling of peptides, proteins, and even cell lysates in hexafluoroisopropanol (HFIP). 
    more » « less
  4. Nucleon structure functions, as measured in lepton-nucleon scattering, have historically provided a critical observable in the study of partonic dynamics within the nucleon. However, at very large parton momenta, it is both experimentally and theoretically challenging to extract parton distributions due to the probable onset of nonperturbative contributions and the unavailability of high-precision data at critical kinematics. Extraction of the neutron structure and the d quark distribution have been further challenging because of the necessity of applying nuclear corrections when utilizing scattering data from a deuteron target to extract the free neutron structure. However, a program of experiments has been carried out recently at the energy-upgraded Jefferson Lab electron accelerator aimed at significantly reducing the nuclear correction uncertainties on the d quark distribution function at large partonic momentum. This allows leveraging the vast body of deuterium data covering a large kinematic range to be utilized for d quark parton distribution function extraction. In this Letter, we present new data from experiment E12-10-002, carried out in Jefferson Lab Experimental Hall C, on the deuteron to proton cross section ratio at large Bjorken x . These results significantly improve the precision of existing data and provide a first look at the expected impact on quark distributions extracted from parton distribution function fits. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  5. Transition metal dichalcogenides (TMDCs) are potential materials for future optoelectronic devices. Grain boundaries (GBs) can significantly influence the optoelectronic properties of TMDC materials. Here, we have investigated the mechanical characteristics of tungsten diselenide (WSe 2 ) monolayers and failure process with symmetric tilt GBs using ReaxFF molecular dynamics simulations. In particular, the effects of topological defects, loading rates, and temperatures are investigated. We considered nine different grain boundary structures of monolayer WSe 2 , of which six are armchair (AC) tilt structures, and the remaining three are zigzag (ZZ) tilt structures. Our results indicate that both tensile strength and fracture strain of WSe 2 with symmetric tilt GBs decrease as the temperature increases. We revealed an interfacial phase transition for high-angle GBs reduces the elastic strain energy within the interface at finite temperatures. Furthermore, brittle cracking is the dominant failure mode in the WSe 2 monolayer with tilted GBs. WSe 2 GB structures showed more strain rate sensitivity at high temperatures than at low temperatures. 
    more » « less